Science Experiment Research Paper Outline

On By In 1

How to Write Your First Research Paper

Elena D. Kallestinova

Graduate Writing Center, Yale Graduate School of Arts and Sciences, Yale University, New Haven, Connecticut

To whom all correspondence should be addressed: Elena D. Kallestinova, Graduate Writing Center, Yale Graduate School of Arts and Sciences, Yale University, New Haven, CT; E-mail: ude.elay@avonitsellak.anele.

Author information ►Copyright and License information ►

Copyright ©2011, Yale Journal of Biology and Medicine

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License, which permits for noncommercial use, distribution, and reproduction in any digital medium, provided the original work is properly cited and is not altered in any way.

Focus: Education — Career Advice

Yale J Biol Med. 2011 Sep; 84(3): 181–190.

Published online 2011 Sep.

This article has been cited by other articles in PMC.

Abstract

Writing a research manuscript is an intimidating process for many novice writers in the sciences. One of the stumbling blocks is the beginning of the process and creating the first draft. This paper presents guidelines on how to initiate the writing process and draft each section of a research manuscript. The paper discusses seven rules that allow the writer to prepare a well-structured and comprehensive manuscript for a publication submission. In addition, the author lists different strategies for successful revision. Each of those strategies represents a step in the revision process and should help the writer improve the quality of the manuscript. The paper could be considered a brief manual for publication.

Keywords: scientific paper, writing process, revision

It is late at night. You have been struggling with your project for a year. You generated an enormous amount of interesting data. Your pipette feels like an extension of your hand, and running western blots has become part of your daily routine, similar to brushing your teeth. Your colleagues think you are ready to write a paper, and your lab mates tease you about your “slow” writing progress. Yet days pass, and you cannot force yourself to sit down to write. You have not written anything for a while (lab reports do not count), and you feel you have lost your stamina. How does the writing process work? How can you fit your writing into a daily schedule packed with experiments? What section should you start with? What distinguishes a good research paper from a bad one? How should you revise your paper? These and many other questions buzz in your head and keep you stressed. As a result, you procrastinate. In this paper, I will discuss the issues related to the writing process of a scientific paper. Specifically, I will focus on the best approaches to start a scientific paper, tips for writing each section, and the best revision strategies.

1. Schedule your writing time in Outlook

Whether you have written 100 papers or you are struggling with your first, starting the process is the most difficult part unless you have a rigid writing schedule. Writing is hard. It is a very difficult process of intense concentration and brain work. As stated in Hayes’ framework for the study of writing: “It is a generative activity requiring motivation, and it is an intellectual activity requiring cognitive processes and memory” [1]. In his book How to Write a Lot: A Practical Guide to Productive Academic Writing, Paul Silvia says that for some, “it’s easier to embalm the dead than to write an article about it” [2]. Just as with any type of hard work, you will not succeed unless you practice regularly. If you have not done physical exercises for a year, only regular workouts can get you into good shape again. The same kind of regular exercises, or I call them “writing sessions,” are required to be a productive author. Choose from 1- to 2-hour blocks in your daily work schedule and consider them as non-cancellable appointments. When figuring out which blocks of time will be set for writing, you should select the time that works best for this type of work. For many people, mornings are more productive. One Yale University graduate student spent a semester writing from 8 a.m. to 9 a.m. when her lab was empty. At the end of the semester, she was amazed at how much she accomplished without even interrupting her regular lab hours. In addition, doing the hardest task first thing in the morning contributes to the sense of accomplishment during the rest of the day. This positive feeling spills over into our work and life and has a very positive effect on our overall attitude.

Rule 1: Create regular time blocks for writing as appointments in your calendar and keep these appointments.

2. Start with an outline

Now that you have scheduled time, you need to decide how to start writing. The best strategy is to start with an outline. This will not be an outline that you are used to, with Roman numerals for each section and neat parallel listing of topic sentences and supporting points. This outline will be similar to a template for your paper. Initially, the outline will form a structure for your paper; it will help generate ideas and formulate hypotheses. Following the advice of George M. Whitesides, “. . . start with a blank piece of paper, and write down, in any order, all important ideas that occur to you concerning the paper” [3]. Use Table 1 as a starting point for your outline. Include your visuals (figures, tables, formulas, equations, and algorithms), and list your findings. These will constitute the first level of your outline, which will eventually expand as you elaborate.

The next stage is to add context and structure. Here you will group all your ideas into sections: Introduction, Methods, Results, and Discussion/Conclusion (Table 2). This step will help add coherence to your work and sift your ideas.

Now that you have expanded your outline, you are ready for the next step: discussing the ideas for your paper with your colleagues and mentor. Many universities have a writing center where graduate students can schedule individual consultations and receive assistance with their paper drafts. Getting feedback during early stages of your draft can save a lot of time. Talking through ideas allows people to conceptualize and organize thoughts to find their direction without wasting time on unnecessary writing. Outlining is the most effective way of communicating your ideas and exchanging thoughts. Moreover, it is also the best stage to decide to which publication you will submit the paper. Many people come up with three choices and discuss them with their mentors and colleagues. Having a list of journal priorities can help you quickly resubmit your paper if your paper is rejected.

Rule 2: Create a detailed outline and discuss it with your mentor and peers.

3. Continue with drafts

After you get enough feedback and decide on the journal you will submit to, the process of real writing begins. Copy your outline into a separate file and expand on each of the points, adding data and elaborating on the details. When you create the first draft, do not succumb to the temptation of editing. Do not slow down to choose a better word or better phrase; do not halt to improve your sentence structure. Pour your ideas into the paper and leave revision and editing for later. As Paul Silvia explains, “Revising while you generate text is like drinking decaffeinated coffee in the early morning: noble idea, wrong time” [2].

Many students complain that they are not productive writers because they experience writer’s block. Staring at an empty screen is frustrating, but your screen is not really empty: You have a template of your article, and all you need to do is fill in the blanks. Indeed, writer’s block is a logical fallacy for a scientist ― it is just an excuse to procrastinate. When scientists start writing a research paper, they already have their files with data, lab notes with materials and experimental designs, some visuals, and tables with results. All they need to do is scrutinize these pieces and put them together into a comprehensive paper.

3.1. Starting with Materials and Methods

If you still struggle with starting a paper, then write the Materials and Methods section first. Since you have all your notes, it should not be problematic for you to describe the experimental design and procedures. Your most important goal in this section is to be as explicit as possible by providing enough detail and references. In the end, the purpose of this section is to allow other researchers to evaluate and repeat your work. So do not run into the same problems as the writers of the sentences in (1):

1a. Bacteria were pelleted by centrifugation.

1b. To isolate T cells, lymph nodes were collected.

As you can see, crucial pieces of information are missing: the speed of centrifuging your bacteria, the time, and the temperature in (1a); the source of lymph nodes for collection in (b). The sentences can be improved when information is added, as in (2a) and (2b), respectfully:

2a. Bacteria were pelleted by centrifugation at 3000g for 15 min at 25°C.

2b. To isolate T cells, mediastinal and mesenteric lymph nodes from Balb/c mice were collected at day 7 after immunization with ovabumin.

If your method has previously been published and is well-known, then you should provide only the literature reference, as in (3a). If your method is unpublished, then you need to make sure you provide all essential details, as in (3b).

3a. Stem cells were isolated, according to Johnson [23].

3b. Stem cells were isolated using biotinylated carbon nanotubes coated with anti-CD34 antibodies.

Furthermore, cohesion and fluency are crucial in this section. One of the malpractices resulting in disrupted fluency is switching from passive voice to active and vice versa within the same paragraph, as shown in (4). This switching misleads and distracts the reader.

4. Behavioral computer-based experiments of Study 1 were programmed by using E-Prime. We took ratings of enjoyment, mood, and arousal as the patients listened to preferred pleasant music and unpreferred music by using Visual Analogue Scales (SI Methods). The preferred and unpreferred status of the music was operationalized along a continuum of pleasantness [4].

The problem with (4) is that the reader has to switch from the point of view of the experiment (passive voice) to the point of view of the experimenter (active voice). This switch causes confusion about the performer of the actions in the first and the third sentences. To improve the coherence and fluency of the paragraph above, you should be consistent in choosing the point of view: first person “we” or passive voice [5]. Let’s consider two revised examples in (5).

5a. We programmed behavioral computer-based experiments of Study 1 by using E-Prime. We took ratings of enjoyment, mood, and arousal by using Visual Analogue Scales (SI Methods) as the patients listened to preferred pleasant music and unpreferred music. We operationalized the preferred and unpreferred status of the music along a continuum of pleasantness.

5b. Behavioral computer-based experiments of Study 1 were programmed by using E-Prime. Ratings of enjoyment, mood, and arousal were taken as the patients listened to preferred pleasant music and unpreferred music by using Visual Analogue Scales (SI Methods). The preferred and unpreferred status of the music was operationalized along a continuum of pleasantness.

If you choose the point of view of the experimenter, then you may end up with repetitive “we did this” sentences. For many readers, paragraphs with sentences all beginning with “we” may also sound disruptive. So if you choose active sentences, you need to keep the number of “we” subjects to a minimum and vary the beginnings of the sentences [6].

Interestingly, recent studies have reported that the Materials and Methods section is the only section in research papers in which passive voice predominantly overrides the use of the active voice [5,7,8,9]. For example, Martínez shows a significant drop in active voice use in the Methods sections based on the corpus of 1 million words of experimental full text research articles in the biological sciences [7]. According to the author, the active voice patterned with “we” is used only as a tool to reveal personal responsibility for the procedural decisions in designing and performing experimental work. This means that while all other sections of the research paper use active voice, passive voice is still the most predominant in Materials and Methods sections.

Writing Materials and Methods sections is a meticulous and time consuming task requiring extreme accuracy and clarity. This is why when you complete your draft, you should ask for as much feedback from your colleagues as possible. Numerous readers of this section will help you identify the missing links and improve the technical style of this section.

Rule 3: Be meticulous and accurate in describing the Materials and Methods. Do not change the point of view within one paragraph.

3.2. Writing Results Section

For many authors, writing the Results section is more intimidating than writing the Materials and Methods section . If people are interested in your paper, they are interested in your results. That is why it is vital to use all your writing skills to objectively present your key findings in an orderly and logical sequence using illustrative materials and text.

Your Results should be organized into different segments or subsections where each one presents the purpose of the experiment, your experimental approach, data including text and visuals (tables, figures, schematics, algorithms, and formulas), and data commentary. For most journals, your data commentary will include a meaningful summary of the data presented in the visuals and an explanation of the most significant findings. This data presentation should not repeat the data in the visuals, but rather highlight the most important points. In the “standard” research paper approach, your Results section should exclude data interpretation, leaving it for the Discussion section. However, interpretations gradually and secretly creep into research papers: “Reducing the data, generalizing from the data, and highlighting scientific cases are all highly interpretive processes. It should be clear by now that we do not let the data speak for themselves in research reports; in summarizing our results, we interpret them for the reader” [10]. As a result, many journals including the Journal of Experimental Medicine and the Journal of Clinical Investigation use joint Results/Discussion sections, where results are immediately followed by interpretations.

Another important aspect of this section is to create a comprehensive and supported argument or a well-researched case. This means that you should be selective in presenting data and choose only those experimental details that are essential for your reader to understand your findings. You might have conducted an experiment 20 times and collected numerous records, but this does not mean that you should present all those records in your paper. You need to distinguish your results from your data and be able to discard excessive experimental details that could distract and confuse the reader. However, creating a picture or an argument should not be confused with data manipulation or falsification, which is a willful distortion of data and results. If some of your findings contradict your ideas, you have to mention this and find a plausible explanation for the contradiction.

In addition, your text should not include irrelevant and peripheral information, including overview sentences, as in (6).

6. To show our results, we first introduce all components of experimental system and then describe the outcome of infections.

Indeed, wordiness convolutes your sentences and conceals your ideas from readers. One common source of wordiness is unnecessary intensifiers. Adverbial intensifiers such as “clearly,” “essential,” “quite,” “basically,” “rather,” “fairly,” “really,” and “virtually” not only add verbosity to your sentences, but also lower your results’ credibility. They appeal to the reader’s emotions but lower objectivity, as in the common examples in (7):

7a. Table 3 clearly shows that …

7b. It is obvious from figure 4 that …

Another source of wordiness is nominalizations, i.e., nouns derived from verbs and adjectives paired with weak verbs including “be,” “have,” “do,” “make,” “cause,” “provide,” and “get” and constructions such as “there is/are.”

8a. We tested the hypothesis that there is a disruption of membrane asymmetry.

8b. In this paper we provide an argument that stem cells repopulate injured organs.

In the sentences above, the abstract nominalizations “disruption” and “argument” do not contribute to the clarity of the sentences, but rather clutter them with useless vocabulary that distracts from the meaning. To improve your sentences, avoid unnecessary nominalizations and change passive verbs and constructions into active and direct sentences.

9a. We tested the hypothesis that the membrane asymmetry is disrupted.

9b. In this paper we argue that stem cells repopulate injured organs.

Your Results section is the heart of your paper, representing a year or more of your daily research. So lead your reader through your story by writing direct, concise, and clear sentences.

Rule 4: Be clear, concise, and objective in describing your Results.

3.3. now it is time for your Introduction

Now that you are almost half through drafting your research paper, it is time to update your outline. While describing your Methods and Results, many of you diverged from the original outline and re-focused your ideas. So before you move on to create your Introduction, re-read your Methods and Results sections and change your outline to match your research focus. The updated outline will help you review the general picture of your paper, the topic, the main idea, and the purpose, which are all important for writing your introduction.

The best way to structure your introduction is to follow the three-move approach shown in Table 3.

Table 3

Moves in Research Paper Introductions

The moves and information from your outline can help to create your Introduction efficiently and without missing steps. These moves are traffic signs that lead the reader through the road of your ideas. Each move plays an important role in your paper and should be presented with deep thought and care. When you establish the territory, you place your research in context and highlight the importance of your research topic. By finding the niche, you outline the scope of your research problem and enter the scientific dialogue. The final move, “occupying the niche,” is where you explain your research in a nutshell and highlight your paper’s significance. The three moves allow your readers to evaluate their interest in your paper and play a significant role in the paper review process, determining your paper reviewers.

Some academic writers assume that the reader “should follow the paper” to find the answers about your methodology and your findings. As a result, many novice writers do not present their experimental approach and the major findings, wrongly believing that the reader will locate the necessary information later while reading the subsequent sections [5]. However, this “suspense” approach is not appropriate for scientific writing. To interest the reader, scientific authors should be direct and straightforward and present informative one-sentence summaries of the results and the approach.

Another problem is that writers understate the significance of the Introduction. Many new researchers mistakenly think that all their readers understand the importance of the research question and omit this part. However, this assumption is faulty because the purpose of the section is not to evaluate the importance of the research question in general. The goal is to present the importance of your research contribution and your findings. Therefore, you should be explicit and clear in describing the benefit of the paper.

The Introduction should not be long. Indeed, for most journals, this is a very brief section of about 250 to 600 words, but it might be the most difficult section due to its importance.

Rule 5: Interest your reader in the Introduction section by signalling all its elements and stating the novelty of the work.

3.4. Discussion of the results

For many scientists, writing a Discussion section is as scary as starting a paper. Most of the fear comes from the variation in the section. Since every paper has its unique results and findings, the Discussion section differs in its length, shape, and structure. However, some general principles of writing this section still exist. Knowing these rules, or “moves,” can change your attitude about this section and help you create a comprehensive interpretation of your results.

The purpose of the Discussion section is to place your findings in the research context and “to explain the meaning of the findings and why they are important, without appearing arrogant, condescending, or patronizing” [11]. The structure of the first two moves is almost a mirror reflection of the one in the Introduction. In the Introduction, you zoom in from general to specific and from the background to your research question; in the Discussion section, you zoom out from the summary of your findings to the research context, as shown in Table 4.

Table 4

Moves in Research Paper Discussions.

The biggest challenge for many writers is the opening paragraph of the Discussion section. Following the moves in Table 1, the best choice is to start with the study’s major findings that provide the answer to the research question in your Introduction. The most common starting phrases are “Our findings demonstrate . . .,” or “In this study, we have shown that . . .,” or “Our results suggest . . .” In some cases, however, reminding the reader about the research question or even providing a brief context and then stating the answer would make more sense. This is important in those cases where the researcher presents a number of findings or where more than one research question was presented. Your summary of the study’s major findings should be followed by your presentation of the importance of these findings. One of the most frequent mistakes of the novice writer is to assume the importance of his findings. Even if the importance is clear to you, it may not be obvious to your reader. Digesting the findings and their importance to your reader is as crucial as stating your research question.

Another useful strategy is to be proactive in the first move by predicting and commenting on the alternative explanations of the results. Addressing potential doubts will save you from painful comments about the wrong interpretation of your results and will present you as a thoughtful and considerate researcher. Moreover, the evaluation of the alternative explanations might help you create a logical step to the next move of the discussion section: the research context.

The goal of the research context move is to show how your findings fit into the general picture of the current research and how you contribute to the existing knowledge on the topic. This is also the place to discuss any discrepancies and unexpected findings that may otherwise distort the general picture of your paper. Moreover, outlining the scope of your research by showing the limitations, weaknesses, and assumptions is essential and adds modesty to your image as a scientist. However, make sure that you do not end your paper with the problems that override your findings. Try to suggest feasible explanations and solutions.

If your submission does not require a separate Conclusion section, then adding another paragraph about the “take-home message” is a must. This should be a general statement reiterating your answer to the research question and adding its scientific implications, practical application, or advice.

Just as in all other sections of your paper, the clear and precise language and concise comprehensive sentences are vital. However, in addition to that, your writing should convey confidence and authority. The easiest way to illustrate your tone is to use the active voice and the first person pronouns. Accompanied by clarity and succinctness, these tools are the best to convince your readers of your point and your ideas.

Rule 6: Present the principles, relationships, and generalizations in a concise and convincing tone.

4. Choosing the best working revision strategies

Now that you have created the first draft, your attitude toward your writing should have improved. Moreover, you should feel more confident that you are able to accomplish your project and submit your paper within a reasonable timeframe. You also have worked out your writing schedule and followed it precisely. Do not stop ― you are only at the midpoint from your destination. Just as the best and most precious diamond is no more than an unattractive stone recognized only by trained professionals, your ideas and your results may go unnoticed if they are not polished and brushed. Despite your attempts to present your ideas in a logical and comprehensive way, first drafts are frequently a mess. Use the advice of Paul Silvia: “Your first drafts should sound like they were hastily translated from Icelandic by a non-native speaker” [2]. The degree of your success will depend on how you are able to revise and edit your paper.

The revision can be done at the macrostructure and the microstructure levels [13]. The macrostructure revision includes the revision of the organization, content, and flow. The microstructure level includes individual words, sentence structure, grammar, punctuation, and spelling.

The best way to approach the macrostructure revision is through the outline of the ideas in your paper. The last time you updated your outline was before writing the Introduction and the Discussion. Now that you have the beginning and the conclusion, you can take a bird’s-eye view of the whole paper. The outline will allow you to see if the ideas of your paper are coherently structured, if your results are logically built, and if the discussion is linked to the research question in the Introduction. You will be able to see if something is missing in any of the sections or if you need to rearrange your information to make your point.

The next step is to revise each of the sections starting from the beginning. Ideally, you should limit yourself to working on small sections of about five pages at a time [14]. After these short sections, your eyes get used to your writing and your efficiency in spotting problems decreases. When reading for content and organization, you should control your urge to edit your paper for sentence structure and grammar and focus only on the flow of your ideas and logic of your presentation. Experienced researchers tend to make almost three times the number of changes to meaning than novice writers [15,16]. Revising is a difficult but useful skill, which academic writers obtain with years of practice.

In contrast to the macrostructure revision, which is a linear process and is done usually through a detailed outline and by sections, microstructure revision is a non-linear process. While the goal of the macrostructure revision is to analyze your ideas and their logic, the goal of the microstructure editing is to scrutinize the form of your ideas: your paragraphs, sentences, and words. You do not need and are not recommended to follow the order of the paper to perform this type of revision. You can start from the end or from different sections. You can even revise by reading sentences backward, sentence by sentence and word by word.

One of the microstructure revision strategies frequently used during writing center consultations is to read the paper aloud [17]. You may read aloud to yourself, to a tape recorder, or to a colleague or friend. When reading and listening to your paper, you are more likely to notice the places where the fluency is disrupted and where you stumble because of a very long and unclear sentence or a wrong connector.

Another revision strategy is to learn your common errors and to do a targeted search for them [13]. All writers have a set of problems that are specific to them, i.e., their writing idiosyncrasies. Remembering these problems is as important for an academic writer as remembering your friends’ birthdays. Create a list of these idiosyncrasies and run a search for these problems using your word processor. If your problem is demonstrative pronouns without summary words, then search for “this/these/those” in your text and check if you used the word appropriately. If you have a problem with intensifiers, then search for “really” or “very” and delete them from the text. The same targeted search can be done to eliminate wordiness. Searching for “there is/are” or “and” can help you avoid the bulky sentences.

The final strategy is working with a hard copy and a pencil. Print a double space copy with font size 14 and re-read your paper in several steps. Try reading your paper line by line with the rest of the text covered with a piece of paper. When you are forced to see only a small portion of your writing, you are less likely to get distracted and are more likely to notice problems. You will end up spotting more unnecessary words, wrongly worded phrases, or unparallel constructions.

After you apply all these strategies, you are ready to share your writing with your friends, colleagues, and a writing advisor in the writing center. Get as much feedback as you can, especially from non-specialists in your field. Patiently listen to what others say to you ― you are not expected to defend your writing or explain what you wanted to say. You may decide what you want to change and how after you receive the feedback and sort it in your head. Even though some researchers make the revision an endless process and can hardly stop after a 14th draft; having from five to seven drafts of your paper is a norm in the sciences. If you can’t stop revising, then set a deadline for yourself and stick to it. Deadlines always help.

Rule 7: Revise your paper at the macrostructure and the microstructure level using different strategies and techniques. Receive feedback and revise again.

5. It is time to submit

It is late at night again. You are still in your lab finishing revisions and getting ready to submit your paper. You feel happy ― you have finally finished a year’s worth of work. You will submit your paper tomorrow, and regardless of the outcome, you know that you can do it. If one journal does not take your paper, you will take advantage of the feedback and resubmit again. You will have a publication, and this is the most important achievement.

What is even more important is that you have your scheduled writing time that you are going to keep for your future publications, for reading and taking notes, for writing grants, and for reviewing papers. You are not going to lose stamina this time, and you will become a productive scientist. But for now, let’s celebrate the end of the paper.

References

  • Hayes JR. In: The Science of Writing: Theories, Methods, Individual Differences, and Applications. Levy CM, Ransdell SE, editors. Mahwah, NJ: Lawrence Erlbaum; 1996. A new framework for understanding cognition and affect in writing; pp. 1–28.
  • Silvia PJ. How to Write a Lot. Washington, DC: American Psychological Association; 2007.
  • Whitesides GM. Whitesides’ Group: Writing a Paper. Adv Mater. 2004;16(15):1375–1377.
  • Soto D, Funes MJ, Guzmán-García A, Warbrick T, Rotshtein T, Humphreys GW. Pleasant music overcomes the loss of awareness in patients with visual neglect. Proc Natl Acad Sci USA. 2009;106(14):6011–6016.[PMC free article][PubMed]
  • Hofmann AH. Scientific Writing and Communication. Papers, Proposals, and Presentations. New York: Oxford University Press; 2010.
  • Zeiger M. Essentials of Writing Biomedical Research Papers. 2nd edition. San Francisco, CA: McGraw-Hill Companies, Inc.; 2000.
  • Martínez I. Native and non-native writers’ use of first person pronouns in the different sections of biology research articles in English. Journal of Second Language Writing. 2005;14(3):174–190.
  • Rodman L. The Active Voice In Scientific Articles: Frequency And Discourse Functions. Journal Of Technical Writing And Communication. 1994;24(3):309–331.
  • Tarone LE, Dwyer S, Gillette S, Icke V. On the use of the passive in two astrophysics journal papers with extensions to other languages and other fields. English for Specific Purposes. 1998;17:113–132.
  • Penrose AM, Katz SB. Writing in the sciences: Exploring conventions of scientific discourse. New York: St. Martin’s Press; 1998.
  • Swales JM, Feak CB. Academic Writing for Graduate Students. 2nd edition. Ann Arbor: University of Michigan Press; 2004.
  • Hess DR. How to Write an Effective Discussion. Respiratory Care. 2004;29(10):1238–1241.[PubMed]
  • Belcher WL. Writing Your Journal Article in 12 Weeks: a guide to academic publishing success. Thousand Oaks, CA: SAGE Publications; 2009.
  • Single PB. Demystifying Dissertation Writing: A Streamlined Process of Choice of Topic to Final Text. Virginia: Stylus Publishing LLC; 2010.
  • Faigley L, Witte SP. Analyzing revision. Composition and Communication. 1981;32:400–414.
  • Flower LS, Hayes JR, Carey L, Schriver KS, Stratman J. Detection, diagnosis, and the strategies of revision. College Composition and Communication. 1986;37(1):16–55.
  • Young BR. In: A Tutor’s Guide: Helping Writers One to One. Rafoth B, editor. Portsmouth, NH: Boynton/Cook Publishers; 2005. Can You Proofread This? pp. 140–158.

Articles from The Yale Journal of Biology and Medicine are provided here courtesy of Yale Journal of Biology and Medicine

ECO 101

Scientific Writing Made Easy: A Step-by-Step Guide to Undergraduate Writing in the Biological Sciences

Authors

  • Sheela P. Turbek,

    1. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, Colorado, USA
    Search for more papers by this author
  • Taylor M. Chock,

    1. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, Colorado, USA
    Search for more papers by this author
  • Kyle Donahue,

    1. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, Colorado, USA
    Search for more papers by this author
  • Caroline A. Havrilla,

    1. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, Colorado, USA
    Search for more papers by this author
  • Angela M. Oliverio,

    1. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, Colorado, USA
    2. Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
    Search for more papers by this author
  • Stephanie K. Polutchko,

    1. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, Colorado, USA
    Search for more papers by this author
  • Lauren G. Shoemaker,

    1. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, Colorado, USA
    Search for more papers by this author
  • Lara Vimercati

    1. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, Colorado, USA
    Search for more papers by this author

  • Note: Charlene D'Avanzo is the editor of Ecology 101. Anyone wishing to contribute articles or reviews to this section should contact her at the School of Natural Sciences, Hampshire College, 893 West Street, Amherst, MA 01002. E-mail: cdavanzo@hampshire.edu

Abstract

Scientific writing, while an indispensable step of the scientific process, is often overlooked in undergraduate courses in favor of maximizing class time devoted to scientific concepts. However, the ability to effectively communicate research findings is crucial for success in the biological sciences. Graduate students are encouraged to publish early and often, and professional scientists are generally evaluated by the quantity of articles published and the number of citations those articles receive. It is therefore important that undergraduate students receive a solid foundation in scientific writing early in their academic careers. In order to increase the emphasis on effective writing in the classroom, we assembled a succinct step-by-Step guide to scientific writing that can be directly disseminated to undergraduates enrolled in biological science courses. The guide breaks down the scientific writing process into easily digestible pieces, providing concrete examples that students can refer to when preparing a scientific manuscript or laboratory report. By increasing undergraduate exposure to the scientific writing process, we hope to better prepare undergraduates for graduate school and productive careers in the biological sciences.

An introduction to the guide

While writing is a critical part of the scientific process, it is often taught secondarily to scientific concepts and becomes an afterthought to students. How many students can you recall who worked on a laboratory assignment or class project for weeks, only to throw together the written report the day before it was due?

For many, this pattern occurs because we focus almost exclusively on the scientific process, all but neglecting the scientific writing process. Scientific writing is often a difficult and arduous task for many students. It follows a different format and deviates in structure from how we were initially taught to write, or even how we currently write for English, history, or social science classes. This can make the scientific writing process appear overwhelming, especially when presented with new, complex content. However, effective writing can deepen understanding of the topic at hand by compelling the writer to present a coherent and logical story that is supported by previous research and new results.

Clear scientific writing generally follows a specific format with key sections: an introduction to a particular topic, hypotheses to be tested, a description of methods, key results, and finally, a discussion that ties these results to our broader knowledge of the topic (Day and Gastel 2012). This general format is inherent in most scientific writing and facilitates the transfer of information from author to reader if a few guidelines are followed.

Here, we present a succinct step-by-step guide that lays out strategies for effective scientific writing with the intention that the guide be disseminated to undergraduate students to increase the focus on the writing process in the college classroom. While we recognize that there are no hard and fast rules when it comes to scientific writing, and more experienced writers may choose to disregard our suggestions these guidelines will assist undergraduates in overcoming the initial challenges associated with writing scientific papers. This guide was inspired by Joshua Schimel's Writing Science: How to Write Papers that Get Cited and Proposals that Get Funded—an excellent book about scientific writing for graduate students and professional scientists—but designed to address undergraduate students. While the guide was written by a group of ecologists and evolutionary biologists, the strategies and suggestions presented here are applicable across the biological sciences and other scientific disciplines. Regardless of the specific course being taught, this guide can be used as a reference when writing scientific papers, independent research projects, and laboratory reports. For students looking for more in-depth advice, additional resources are listed at the end of the guide.

To illustrate points regarding each step of the scientific writing process, we draw examples throughout the guide from Kilner et al. (2004), a paper on brown-headed cowbirds—a species of bird that lays its eggs in the nests of other bird species, or hosts—that was published in the journal Science. Kilner et al. investigate why cowbird nestlings tolerate the company of host offspring during development rather than pushing host eggs out of the nest upon hatching to monopolize parental resources. While articles in the journal Science are especially concise and lack the divisions of a normal scientific paper, Kilner et al. (2004) offers plenty of examples of effective communication strategies that are utilized in scientific writing. We hope that the guidelines that follow, as well as the concrete examples provided, will lead to scientific papers that are information rich, concise, and clear, while simultaneously alleviating frustration and streamlining the writing process.

Undergraduate guide to writing in the biological sciences

The before steps

The scientific writing process can be a daunting and often procrastinated “last step” in the scientific process, leading to cursory attempts to get scientific arguments and results down on paper. However, scientific writing is not an afterthought and should begin well before drafting the first outline. Successful writing starts with researching how your work fits into existing literature, crafting a compelling story, and determining how to best tailor your message to an intended audience.

Research how your work fits into existing literature

It is important to decide how your research compares to other studies of its kind by familiarizing yourself with previous research on the topic. If you are preparing a laboratory write-up, refer to your textbook and laboratory manual for background information. For a research article, perform a thorough literature search on a credible search engine (e.g., Web of Science, Google Scholar). Ask the following questions: What do we know about the topic? What open questions and knowledge do we not yet know? Why is this information important? This will provide critical insight into the structure and style that others have used when writing about the field and communicating ideas on this specific topic. It will also set you up to successfully craft a compelling story, as you will begin writing with precise knowledge of how your work builds on previous research and what sets your research apart from the current published literature.

Understand your audience (and write to them)

In order to write effectively, you must identify your audience and decide what story you want them to learn. While this may seem obvious, writing about science as a narrative is often not done, largely because you were probably taught to remain dispassionate and impartial while communicating scientific findings. The purpose of science writing is not explaining what you did or what you learned, but rather what you want your audience to understand. Start by asking: Who is my audience? What are their goals in reading my writing? What message do I want them to take away from my writing? There are great resources available to help science writers answer these questions (Nisbet 2009, Baron 2010). If you are interested in publishing a scientific paper, academic journal websites also provide clear journal mission statements and submission guidelines for prospective authors. The most effective science writers are familiar with the background of their topic, have a clear story that they want to convey, and effectively craft their message to communicate that story to their audience.

Introduction

The Introduction sets the tone of the paper by providing relevant background information and clearly identifying the problem you plan to address. Think of your Introduction as the beginning of a funnel: Start wide to put your research into a broad context that someone outside of the field would understand, and then narrow the scope until you reach the specific question that you are trying to answer (Fig. 1; Schimel 2012). Clearly state the wider implications of your work for the field of study, or, if relevant, any societal impacts it may have, and provide enough background information that the reader can understand your topic. Perform a thorough sweep of the literature; however, do not parrot everything you find. Background information should only include material that is directly relevant to your research and fits into your story; it does not need to contain an entire history of the field of interest. Remember to include in-text citations in the format of (Author, year published) for each paper that you cite and avoid using the author's name as the subject of the sentence:

“Kilner et al. (2004) found that cowbird nestlings use host offspring to procure more food.”

Instead, use an in-text citation:

“Cowbird nestlings use host offspring to procure more food.”

(Kilner et al. 2004)

Upon narrowing the background information presented to arrive at the specific focus of your research, clearly state the problem that your paper addresses. The problem is also known as the knowledge gap, or a specific area of the literature that contains an unknown question or problem (e.g., it is unclear why cowbird nestlings tolerate host offspring when they must compete with host offspring for food) (refer to the section “Research how your work fits into existing literature”). The knowledge gap tends to be a small piece of a much larger field of study. Explicitly state how your work will contribute to filling that knowledge gap. This is a crucial section of your manuscript; your discussion and conclusion should all be aimed at answering the knowledge gap that you are trying to fill. In addition, the knowledge gap will drive your hypotheses and questions that you design your experiment to answer.

Your hypothesis will often logically follow the identification of the knowledge gap (Table 1). Define the hypotheses you wish to address, state the approach of your experiment, and provide a 1–2 sentence overview of your experimental design, leaving the specific details for the methods section. If your methods are complicated, consider briefly explaining the reasoning behind your choice of experimental design. Here, you may also state your system, study organism, or study site, and provide justification for why you chose this particular system for your research. Is your system, study organism, or site a good representation of a more generalized pattern? Providing a brief outline of your project will allow your Introduction to segue smoothly into your 'Materials and Methods' section.

A hypothesis is a testable explanation of an observed occurrence in nature, or, more specifically, why something you observed is occurring. Hypotheses relate directly to research questions, are written in the present tense, and can be tested through observation or experimentation. Although the terms “hypothesis” and “prediction” are often incorrectly used interchangeably, they refer to different but complementary concepts. A hypothesis attempts to explain the mechanism underlying a pattern, while a prediction states an expectation regarding the results. While challenging to construct, hypotheses provide powerful tools for structuring research, generating specific predictions, and designing experiments.
Example:
Observation: Brown-headed cowbird nestlings refrain from ejecting host offspring from the nest even though those offspring compete for limited parental resources.
Research question: Why do nestling cowbirds tolerate the presence of host offspring in the nest?
Hypothesis: The presence of host offspring causes parents to bring more food to the nest.
Prediction: Cowbird nestlings will grow at a faster rate in nests that contain host offspring.

Materials and Methods

The 'Materials and Methods' section is arguably the most straightforward section to write; you can even begin writing it while performing your experiments to avoid forgetting any details of your experimental design. In order to make your paper as clear as possible, organize this section into subsections with headers for each procedure you describe (e.g., field collection vs. laboratory analysis). We recommend reusing these headers in your Results and Discussion to help orient your readers.

The aim of the 'Materials and Methods' section is to demonstrate that you used scientifically valid methods and provide the reader with enough information to recreate your experiment. In chronological order, clearly state the procedural steps you took, remembering to include the model numbers and specific settings of all equipment used (e.g., centrifuged in Beckman Coulter Benchtop Centrifuge Model Allegra X -15R at 12,000 × g for 45 minutes). In addition to your experimental procedure, describe any statistical analyses that you performed. While the parameters you include in your 'Materials and Methods' section will vary based on your experimental design, we list common ones in Table 2 (Journal of Young Investigators 2005) that are usually mentioned. If you followed a procedure developed from another paper, cite the source that it came from and provide a general description of the method. There is no need to reiterate every detail, unless you deviated from the source and changed a step in your procedure. However, it is important to provide enough information that the reader can follow your methods without referring to the original source. As you explain your experiment step by step, you may be tempted to include qualifiers where sources of error occurred (e.g., the tube was supposed to be centrifuged for 5 minutes, but was actually centrifuged for 10). However, generally wait until the Discussion to mention these subjective qualifiers and avoid discussing them in the 'Materials and Methods' section.

• Site characterization:
Study organism used, its origin, any pre-experiment handling or care
Description of field site or site where experiment was performed
• Experimental design:
Step-by-step procedures in paragraph form
Sample preparation
Experimental controls
Equipment used, including model numbers and year
Important equipment settings (e.g., temperature of incubation, speed of centrifuge)
Amount of reagents used
Specific measurements taken (e.g., wing length, weight of organism)
• Statistical analyses conducted (e.g., ANOVA, linear regression)

The 'Materials and Methods' section should be written in the past tense:

“On hatch day, and every day thereafter for 9 days, we weighed chicks, measured their tibia length, and calculated the instantaneous growth constant K to summarize rates of mass gain and skeletal growth.”

(Kilner et al. 2004)

While it is generally advisable to use active voice throughout the paper (refer to the section “Putting It All Together,” below), you may want to use a mixture of active and passive voice in the 'Materials and Methods' section in order to vary sentence structure and avoid repetitive clauses.

Results

The Results section provides a space to present your key findings in a purely objective manner and lay the foundation for the Discussion section, where those data are subjectively interpreted. Before diving into this section, identify which graphs, tables, and data are absolutely necessary for telling your story. Then, craft a descriptive sentence or two that summarizes each result, referring to corresponding table and figure numbers. Rather than presenting the details all at once, write a short summary about each data set. If you carried out a complicated study, we recommend dividing your results into multiple sections with clear headers following the sequence laid out in the 'Materials and Methods' section.

As you relate each finding, be as specific as possible and describe your data biologically rather than through the lens of statistics. While statistical tests give your data credibility by allowing you to attribute observed differences to nonrandom variation, they fail to address the actual meaning of the data. Instead, translate the data into biological terms and refer to statistical results as supplemental information, or even in parenthetical clauses (Schimel 2012). For example, if your dependent variable changed in response to a treatment, report the magnitude and direction of the effect, with the P-value in parentheses.

“By day 8, cowbirds reared with host young were, on average, 14% heavier than cowbirds reared alone (unpaired t16 = −2.23, P = 0.041, Fig. 2A).”

(Kilner et al. 2004)

If your P-value exceeded 0.05 (or your other statistical tests yielded nonsignificant results), report any noticeable trends in the data rather than simply dismissing the treatment as having no significant effect (Fry 1993). By focusing on the data and leaving out any interpretation of the results in this section, you will provide the reader with the tools necessary to objectively evaluate your findings.

Discussion and conclusion

The Discussion section usually requires the most consideration, as this is where you interpret your results. Your Discussion should form a self-contained story tying together your Introduction and Results sections (Schimel 2012). One potential strategy for writing the Discussion is to begin by explicitly stating the main finding(s) of your research (Cals and Kotz 2013). Remind the reader of the knowledge gap identified in the Introduction to re-spark curiosity about the question you set out to answer. Then, explicitly state how your experiment moved the field forward by filling that knowledge gap.

After the opening paragraph of your Discussion, we suggest addressing your question and hypotheses with specific evidence from your results. If there are multiple possible interpretations of a result, clearly lay out each competing explanation. In the cowbird example, a higher feeding rate in the presence of host offspring could indicate either (1) that the parents were more responsive to the begging behavior of their own species or (2) that the collective begging behavior of more offspring in the nest motivated the host parents to provide additional food (Kilner et al. 2004). Presenting and evaluating alternative explanations of your findings will provide clear opportunities for future research. However, be sure to keep your Discussion concrete by referring to your results to support each given interpretation.

Intermingled with these interpretations, reference preexisting literature and report how your results relate to previous findings (Casenove and Kirk 2016). Ask yourself the following questions: How do my results compare to those of similar studies? Are they consistent or inconsistent with what other researchers have found? If they are inconsistent, discuss why this might be the case. For example, are you asking a similar question in a different system, organism, or site? Was there a difference in the methods or experimental design? Any caveats of the study (e.g., small sample size, procedural mistakes, or known biases in the methods) should be transparent and briefly discussed.

The conclusion, generally located in its own short section or the last paragraph of the Discussion, represents your final opportunity to state the significance of your research. Rather than merely restating your main findings, the conclusion should summarize the outcome of your study in a way that incorporates new insights or frames interesting questions that arose as a result of your research. Broaden your perspective again as you reach the bottom of the hourglass (Fig. 1). While it is important to acknowledge the shortcomings or caveats of the research project, generally include these near the beginning of the conclusion or earlier in the Discussion. You want your take-home sentences to focus on what you have accomplished and the broader implications of your study, rather than your study's limitations or shortcomings (Schimel 2012). End on a strong note.

Putting it all together

No matter how many boards you stack on top of each other, you still need nails to prevent the pile from falling apart. The same logic applies to a scientific paper. Little things—such as flow, structure, voice, and word choice—will connect your story, polish your paper, and make it enjoyable to read.

First, a paper needs to flow. The reader should easily be able to move from one concept to another, either within a sentence or between paragraphs. To bolster the flow, constantly remind yourself of the overarching story; always connect new questions with resolutions and tie new concepts to previously presented ideas. As a general rule, try to maintain the same subject throughout a section and mix up sentence structure in order to emphasize different concepts. Keep in mind that words or ideas placed toward the end of a sentence often convey the most importance (Schimel 2012).

The use of active voice with occasional sentences in passive voice will additionally strengthen your writing. Scientific writing is rife with passive voice that weakens otherwise powerful sentences by stripping the subjects of action. However, when used properly, the passive voice can improve flow by strategically placing a sentence's subject so that it echoes the emphasis of the preceding sentence. Compare the following sentences:

“The cowbird nestlings tolerated the host nestlings.”

(active)

“The host nestlings were tolerated by the cowbird nestlings.”

(passive)

If host nestlings are the focus of the paragraph as a whole, it may make more sense to present the passive sentence in this case, even though it is weaker than the active version. While passive and active voices can complement each other in particular situations, you should typically use the active voice whenever possible.

Lastly, word choice is critical for effective storytelling (Journal of Young Investigators 2005). Rather than peppering your report or manuscript with overly complicated words, use simple words to lay the framework of your study and discuss your findings. Eliminating any flourish and choosing words that get your point across as clearly as possible will make your work much more enjoyable to read (Strunk and White 1979, Schimel 2012).

Editing and peer review

Although you have finally finished collecting data and writing your report, you are not done yet! Re-reading your paper and incorporating constructive feedback from others can make the difference between getting a paper accepted or rejected from a journal or receiving one letter grade over another on a report. The editing stage is where you put the finishing touches on your work.

Start by taking some time away from your paper. Ideally, you began your paper early enough that you can refrain from looking at it for a day or two. However, if the deadline looms large, take an hour break at the very least. Come back to your paper and verify that it still expresses what you intended to say. Where are the gaps in your story structure? What has not been explained clearly? Where is the writing awkward, making it difficult to understand your point? Consider reading the paper out loud first, and then print and edit a hard copy to inspect the paper from different angles.

Editing is best done in stages. On the first run-through of your paper, make sure you addressed all of the main ideas of the study. One way to achieve this is by writing down the key points you want to hit prior to re-reading your paper. If your paper deviates from these points, you may need to delete some paragraphs. In contrast, if you forgot to include something, add it in. To check the flow of your paragraphs, verify that a common thread ties each paragraph to the preceding one, and similarly, that each sentence within a paragraph builds on the previous sentence. Finally, re-read the paper with a finer lens, editing sentence structure and word choice as you go to put the finishing touches on your work. Grammar and spelling are just as important as your scientific story; a poorly written paper will have limited impact regardless of the quality of the ideas expressed (Harley et al. 2004).

After editing your own paper, ask someone else to read it. A classmate is ideal because he/she understands the assignment and could exchange papers with you. The editing steps described above also apply when editing someone else's paper. If a classmate is not available, try asking a family member or a friend. Having a fresh set of eyes examine your work may help you identify sections of your paper that need clarification. This procedure will also give you a glimpse into the peer review process, which is integral to professional science writing (Guilford 2001). Don't be discouraged by negative comments—incorporating the feedback of reviewers will only strengthen your paper. Good criticism is constructive.

Conclusion

While the basics of writing are generally taught early in life, many people constantly work to refine their writing ability throughout their careers. Even professional scientists feel that they can always write more effectively. Focusing on the strategies for success laid out in this guide will not only improve your writing skills, but also make the scientific writing process easier and more efficient. However, keep in mind that there is no single correct way to write a scientific paper, and as you gain experience with scientific writing, you will begin to find your own voice. Good luck and happy writing!

Additional resources

For those interested in learning more about the skill of scientific writing, we recommend the following resources. We note that much of the inspiration and concrete ideas for this step-by-step guide originated from Schimel's Writing Science: How to Write Papers that Get Cited and Proposals that Get Funded.

  1. Journal of Young Investigators. 2005. Writing scientific manuscripts: a guide for undergraduates. Journal of Young Investigators, California.
  2. Lanciani, C. A. 1998. Reader-friendly writing in science. Bulletin of the Ecological Society of America 79: 171–172.
  3. Morris, J., T. Jehn, C. Vaughan, E. Pantages, T. Torello, M. Bucheli, D. Lohman, and R. Jue. 2007. A student's guide to writing in the life sciences. The President and Fellows of Harvard University, Massachusetts.
  4. Schimel, J. 2012. Writing science: how to write papers that get cited and proposals that get funded. Oxford University Press, Oxford.

Acknowledgments

We thank Nichole Barger and the University of Colorado, Boulder 2016 graduate writing seminar for helpful discussions that greatly enhanced the quality of this essay.

Potential Conflicts of Interest

None.

Ancillary

Article Information

Format Available

Full text: HTML | PDF

© 2016 The Authors. The Bulletin of the Ecological Society of America, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Request Permissions

Publication History

  • Issue online:
  • Version of record online:

Literature Cited

  • Baron, N.2010. Escape from the ivory tower: a guide to making your science matter. Island Press, Washington, D.C.
  • Cals, J. W., and D. Kotz. 2013. Effective writing and publishing scientific papers, part VI: discussion. Journal of Clinical Epidemiology66:1064.
  • Casenove, D., and S. Kirk. 2016. A spoonful of science can make science writing more hedged. Electronic Journal of Science Education20:138–149.
  • Day, R., and B. Gastel. 2012. How to write and publish a scientific paper. Cambridge University Press, Cambridge.
  • Fry, J. C.1993. Biological data analysis: a practical approach. IRL Press Ltd, Oxford.
  • Guilford, W. H.2001. Teaching peer review and the process of scientific writing. Advances in Physiology Education25:167–175.
  • Harley, C. D., M. A. Hixon, and L. A. Levin. 2004. Scientific Writing And Publishing-A Guide For Students. Bulletin of the Ecological Society of America85:74–78.
  • Journal of Young Investigators. 2005. Writing scientific manuscripts: a guide for undergraduates. Journal of Young Investigators.
  • Kilner, R., J. Madden, and M. Hauber. 2004. Brood parasitic cowbird nestlings use host young to procure resources. Science305:877–879.
  • Nisbet, M. C.2009. Framing science: a new paradigm in public engagement. Pages 40–67inL. Kahlor and P. Stout, editors. Understanding science: new agendas in science communication. Taylor and Francis, New York, New York.
  • Schimel, J.2012. Writing science: how to write papers that get cited and proposals that get funded. Oxford University Press, Oxford.
  • Strunk, W., and E. B. White. 1979. The elements of style. Third edition. Macmillan Publishing Co, New York, New York.

Related content

Articles related to the one you are viewing

Citing Literature

0 comments

Leave a Reply

Your email address will not be published. Required fields are marked *