Essay Water Pollution Pdf

Water pollution is the contamination of water bodies (e.g. lakes, rivers, oceans, aquifers and groundwater). This form of environmental degradation occurs when pollutants are directly or indirectly discharged into water bodies without adequate treatment to remove harmful compounds.

Water pollution affects the entire biosphere of plants and organisms living in these water bodies, as well as organisms and plants that might be exposed to the water. In almost all cases the effect is damaging not only to individual species and populations, but also to the natural biological communities.

Introduction

Water pollution is a major global problem which requires ongoing evaluation and revision of water resource policy at all levels (international down to individual aquifers and wells). It has been suggested that water pollution is the leading worldwide cause of deaths and diseases,[1][2] and that it accounts for the deaths of more than 14,000 people daily.[2] An estimated 580 people in India die of water pollution related illness every day.[3] About 90 percent of the water in the cities of China is polluted.[4] As of 2007, half a billion Chinese had no access to safe drinking water.[5] In addition to the acute problems of water pollution in developing countries, developed countries also continue to struggle with pollution problems. For example, in the most recent national report on water quality in the United States, 44 percent of assessed stream miles, 64 percent of assessed lake acres, and 30 percent of assessed bays and estuarine square miles were classified as polluted.[6] The head of China's national development agency said in 2007 that one quarter the length of China's seven main rivers were so poisoned the water harmed the skin.[7]

Water is typically referred to as polluted when it is impaired by anthropogenic contaminants and either does not support a human use, such as drinking water, or undergoes a marked shift in its ability to support its constituent biotic communities, such as fish. Natural phenomena such as volcanoes, algae blooms, storms, and earthquakes also cause major changes in water quality and the ecological status of water.

Categories

Although interrelated, surface water and groundwater have often been studied and managed as separate resources.[8] Surface water seeps through the soil and becomes groundwater. Conversely, groundwater can also feed surface water sources. Sources of surface water pollution are generally grouped into two categories based on their origin.

Point sources

Point source water pollution refers to contaminants that enter a waterway from a single, identifiable source, such as a pipe or ditch. Examples of sources in this category include discharges from a sewage treatment plant, a factory, or a city storm drain. The U.S. Clean Water Act (CWA) defines point source for regulatory enforcement purposes.[9] The CWA definition of point source was amended in 1987 to include municipal storm sewer systems, as well as industrial storm water, such as from construction sites.[10]

Non-point sources

Nonpoint source pollution refers to diffuse contamination that does not originate from a single discrete source. NPS pollution is often the cumulative effect of small amounts of contaminants gathered from a large area. A common example is the leaching out of nitrogen compounds from fertilized agricultural lands.[11] Nutrient runoff in storm water from "sheet flow" over an agricultural field or a forest are also cited as examples of NPS pollution.

Contaminated storm water washed off of parking lots, roads and highways, called urban runoff, is sometimes included under the category of NPS pollution. However, because this runoff is typically channeled into storm drain systems and discharged through pipes to local surface waters, it becomes a point source.

Groundwater pollution

Main article: Groundwater pollution

Interactions between groundwater and surface water are complex. Consequently, groundwater pollution, also referred to as groundwater contamination, is not as easily classified as surface water pollution.[8] By its very nature, groundwater aquifers are susceptible to contamination from sources that may not directly affect surface water bodies, and the distinction of point vs. non-point source may be irrelevant. A spill or ongoing release of chemical or radionuclide contaminants into soil (located away from a surface water body) may not create point or non-point source pollution but can contaminate the aquifer below, creating a toxic plume. The movement of the plume, called a plume front, may be analyzed through a hydrological transport model or groundwater model. Analysis of groundwater contamination may focus on soil characteristics and site geology, hydrogeology, hydrology, and the nature of the contaminants.

Causes

The specific contaminants leading to pollution in water include a wide spectrum of chemicals, pathogens, and physical changes such as elevated temperature and discoloration. While many of the chemicals and substances that are regulated may be naturally occurring (calcium, sodium, iron, manganese, etc.) the concentration is often the key in determining what is a natural component of water and what is a contaminant. High concentrations of naturally occurring substances can have negative impacts on aquatic flora and fauna.

Oxygen-depleting substances may be natural materials such as plant matter (e.g. leaves and grass) as well as man-made chemicals. Other natural and anthropogenic substances may cause turbidity (cloudiness) which blocks light and disrupts plant growth, and clogs the gills of some fish species.[12]

Many of the chemical substances are toxic.[13]:229 Pathogens can produce waterborne diseases in either human or animal hosts.[14] Alteration of water's physical chemistry includes acidity (change in pH), electrical conductivity, temperature, and eutrophication. Eutrophication is an increase in the concentration of chemical nutrients in an ecosystem to an extent that increases the primary productivity of the ecosystem. Depending on the degree of eutrophication, subsequent negative environmental effects such as anoxia (oxygen depletion) and severe reductions in water quality may occur, affecting fish and other animal populations.

China's extraordinary economic growth, industrialization, and urbanization, coupled with inadequate investment in basic water supply and treatment infrastructure, has resulted in widespread water pollution.[15]

Pathogens

Disease-causing microorganisms are referred to as pathogens. Although the vast majority of bacteria are either harmless or beneficial, a few pathogenic bacteria can cause disease. Coliform bacteria, which are not an actual cause of disease, are commonly used as a bacterial indicator of water pollution. Other microorganisms sometimes found in contaminated surface waters that have caused human health problems include:

High levels of pathogens may result from on-site sanitation systems (septic tanks, pit latrines) or inadequately treated sewage discharges.[18] This can be caused by a sewage treatment plant operating without a sterilization stage or long retention polishing capability. Older cities with ageing infrastructure may have leaky sewage collection systems (pipes, pumps, valves), which can cause sanitary sewer overflows. Some cities also have combined sewers, which may discharge untreated sewage during rain storms.[19]Silt (sediment) from sewage discharges also pollutes water bodies.

Pathogen discharges may also be caused by poorly managed livestock operations.

Organic, inorganic and macroscopic contaminants

Contaminants may include organic and inorganic substances.

Organic water pollutants include:

  • Detergents
  • Disinfection by-products found in chemically disinfecteddrinking water, such as chloroform
  • Food processing waste, which can include oxygen-demanding substances, fats and grease
  • Insecticides and herbicides, a huge range of organohalides and other chemical compounds
  • Petroleum hydrocarbons, including fuels (gasoline, diesel fuel, jet fuels, and fuel oil) and lubricants (motor oil), and fuel combustion byproducts, from storm waterrunoff[20]
  • Volatile organic compounds, such as industrial solvents, from improper storage.
  • Chlorinated solvents, which are dense non-aqueous phase liquids, may fall to the bottom of reservoirs, since they don't mix well with water and are denser.
  • Perchlorate
  • Various chemical compounds found in personal hygiene and cosmetic products
  • Drug pollution involving pharmaceutical drugs and their metabolites

Inorganic water pollutants include:

Macroscopic pollution – large visible items polluting the water – may be termed "floatables" in an urban storm water context, or marine debris when found on the open seas, and can include such items as:

  • Trash or garbage (e.g. paper, plastic, or food waste) discarded by people on the ground, along with accidental or intentional dumping of rubbish, that are washed by rainfall into storm drains and eventually discharged into surface waters.
  • Nurdles, small ubiquitous waterborne plastic pellets. Seeplastic pollution.
  • Shipwrecks, large derelict ships.

Thermal pollution

Main article: Thermal pollution

Thermal pollution is the rise or fall in the temperature of a natural body of water caused by human influence. Thermal pollution, unlike chemical pollution, results in a change in the physical properties of water. A common cause of thermal pollution is the use of water as a coolant by power plants and industrial manufacturers. Elevated water temperatures decrease oxygen levels, which can kill fish and alter food chain composition, reduce species biodiversity, and foster invasion by new thermophilic species.[22][23][13]:375 Urban runoff may also elevate temperature in surface waters.[24]

Thermal pollution can also be caused by the release of very cold water from the base of reservoirs into warmer rivers.

Transport and chemical reactions of water pollutants

See also: Marine pollution

Most water pollutants are eventually carried by rivers into the oceans. In some areas of the world the influence can be traced one hundred miles from the mouth by studies using hydrology transport models. Advanced computer models such as SWMM or the DSSAM Model have been used in many locations worldwide to examine the fate of pollutants in aquatic systems. Indicator filter-feeding species such as copepods have also been used to study pollutant fates in the New York Bight, for example. The highest toxin loads are not directly at the mouth of the Hudson River, but 100 km (62 mi) south, since several days are required for incorporation into planktonic tissue. The Hudson discharge flows south along the coast due to the coriolis force. Further south are areas of oxygen depletion caused by chemicals using up oxygen and by algae blooms, caused by excess nutrients from algal cell death and decomposition. Fish and shellfish kills have been reported, because toxins climb the food chain after small fish consume copepods, then large fish eat smaller fish, etc. Each successive step up the food chain causes a cumulative concentration of pollutants such as heavy metals (e.g. mercury) and persistent organic pollutants such as DDT. This is known as bio-magnification, which is occasionally used interchangeably with bio-accumulation.

Large gyres (vortexes) in the oceans trap floating plastic debris. The North Pacific Gyre, for example, has collected the so-called "Great Pacific Garbage Patch", which is now estimated to be one hundred times the size of Texas. Plastic debris can absorb toxic chemicals from ocean pollution, potentially poisoning any creature that eats it.[25] Many of these long-lasting pieces wind up in the stomachs of marine birds and animals. This results in obstruction of digestive pathways, which leads to reduced appetite or even starvation.

Many chemicals undergo reactive decay or chemical change, especially over long periods of time in groundwater reservoirs. A noteworthy class of such chemicals is the chlorinated hydrocarbons such as trichloroethylene (used in industrial metal degreasing and electronics manufacturing) and tetrachloroethylene used in the dry cleaning industry. Both of these chemicals, which are carcinogens themselves, undergo partial decomposition reactions, leading to new hazardous chemicals (including dichloroethylene and vinyl chloride).

Groundwaterpollution is much more difficult to abate than surface pollution because groundwater can move great distances through unseen aquifers. Non-porous aquifers such as clays partially purify water of bacteria by simple filtration (adsorption and absorption), dilution, and, in some cases, chemical reactions and biological activity; however, in some cases, the pollutants merely transform to soil contaminants. Groundwater that moves through open fractures and caverns is not filtered and can be transported as easily as surface water. In fact, this can be aggravated by the human tendency to use natural sinkholes as dumps in areas of karst topography.

There are a variety of secondary effects stemming not from the original pollutant, but a derivative condition. An example is silt-bearing surface runoff, which can inhibit the penetration of sunlight through the water column, hampering photosynthesis in aquatic plants.

Measurement

Water pollution may be analyzed through several broad categories of methods: physical, chemical and biological. Most involve collection of samples, followed by specialized analytical tests. Some methods may be conducted in situ, without sampling, such as temperature. Government agencies and research organizations have published standardized, validated analytical test methods to facilitate the comparability of results from disparate testing events.[26]

Sampling

Sampling of water for physical or chemical testing can be done by several methods, depending on the accuracy needed and the characteristics of the contaminant. Many contamination events are sharply restricted in time, most commonly in association with rain events. For this reason "grab" samples are often inadequate for fully quantifying contaminant levels. Scientists gathering this type of data often employ auto-sampler devices that pump increments of water at either time or discharge intervals.

Sampling for biological testing involves collection of plants and animals from the surface water body. Depending on the type of assessment, the organisms may be identified for biosurveys (population counts) and returned to the water body, or they may be dissected for bioassays to determine toxicity.

Further information: Water quality § Sampling and measurement

Physical testing

Common physical tests of water include temperature, solids concentrations (e.g., total suspended solids (TSS)) and turbidity.

Chemical testing

See also: water chemistry analysis and environmental chemistry

Water samples may be examined using the principles of analytical chemistry. Many published test methods are available for both organic and inorganic compounds. Frequently used methods include pH, biochemical oxygen demand (BOD),[27]:102chemical oxygen demand (COD),[27]:104 nutrients (nitrate and phosphorus compounds), metals (including copper, zinc, cadmium, lead and mercury), oil and grease, total petroleum hydrocarbons (TPH), and pesticides.

Biological testing

Main article: Bioindicator

Biological testing involves the use of plant, animal or microbial indicators to monitor the health of an aquatic ecosystem. They are any biological species or group of species whose function, population, or status can reveal what degree of ecosystem or environmental integrity is present.[28] One example of a group of bio-indicators are the copepods and other small water crustaceans that are present in many water bodies. Such organisms can be monitored for changes (biochemical, physiological, or behavioral) that may indicate a problem within their ecosystem.

For microbial testing of drinking water, see Bacteriological water analysis.

Control of pollution

Decisions on the type and degree of treatment and control of wastes, and the disposal and use of adequately treated wastewater, must be based on a consideration all the technical factors of each drainage basin, in order to prevent any further contamination or harm to the environment.[29]

Sewage treatment

Main article: Sewage treatment

In urban areas of developed countries, domestic sewage is typically treated by centralized sewage treatment plants. Well-designed and operated systems (i.e., secondary treatment or better) can remove 90 percent or more of the pollutant load in sewage. Some plants have additional systems to remove nutrients and pathogens.

Cities with sanitary sewer overflows or combined sewer overflows employ one or more engineering approaches to reduce discharges of untreated sewage, including:

  • utilizing a green infrastructure approach to improve storm water management capacity throughout the system, and reduce the hydraulic overloading of the treatment plant[30]
  • repair and replacement of leaking and malfunctioning equipment[19]
  • increasing overall hydraulic capacity of the sewage collection system (often a very expensive option).

A household or business not served by a municipal treatment plant may have an individual septic tank, which pre-treats the wastewater on site and infiltrates it into the soil.

Industrial wastewater treatment

Main article: Industrial wastewater treatment

Some industrial facilities generate ordinary domestic sewage that can be treated by municipal facilities. Industries that generate wastewater with high concentrations of conventional pollutants (e.g. oil and grease), toxic pollutants (e.g. heavy metals, volatile organic compounds) or other non-conventional pollutants such as ammonia, need specialized treatment systems. Some of these facilities can install a pre-treatment system to remove the toxic components, and then send the partially treated wastewater to the municipal system. Industries generating large volumes of wastewater typically operate their own complete on-site treatment systems. Some industries have been successful at redesigning their manufacturing processes to reduce or eliminate pollutants, through a process called pollution prevention.

Heated water generated by power plants or manufacturing plants may be controlled with:

Agricultural wastewater treatment

Main article: Agricultural wastewater treatment

Non point source controls
Sediment (loose soil) washed off fields is the largest source of agricultural pollution in the United States.[12] Farmers may utilize erosion controls to reduce runoff flows and retain soil on their fields. Common techniques include contour plowing, crop mulching, crop rotation, planting perennial crops and installing riparian buffers.[32][33]:pp. 4-95–4-96

Nutrients (nitrogen and phosphorus) are typically applied to farmland as commercial fertilizer, animal manure, or spraying of municipal or industrial wastewater (effluent) or sludge. Nutrients may also enter runoff from crop residues, irrigation water, wildlife, and atmospheric deposition.[33]:p. 2–9 Farmers can develop and implement nutrient management plans to reduce excess application of nutrients[32][33]:pp. 4-37–4-38 and reduce the potential for nutrient pollution.

To minimize pesticide impacts, farmers may use Integrated Pest Management (IPM) techniques (which can include biological pest control) to maintain control over pests, reduce reliance on chemical pesticides, and protect water quality.[34]

Point source wastewater treatment
Farms with large livestock and poultry operations, such as factory farms, are called concentrated animal feeding operations or feedlots in the US and are being subject to increasing government regulation.[35][36] Animal slurries are usually treated by containment in anaerobic lagoons before disposal by spray or trickle application to grassland. Constructed wetlands are sometimes used to facilitate treatment of animal wastes. Some animal slurries are treated by mixing with straw and composted at high temperature to produce a bacteriologically sterile and friable manure for soil improvement.

Erosion and sediment control from construction sites

Sediment from construction sites is managed by installation of:

Discharge of toxic chemicals such as motor fuels and concrete washout is prevented by use of:

  • spill prevention and control plans, and
  • specially designed containers (e.g. for concrete washout) and structures such as overflow controls and diversion berms.[38]

Control of urban runoff (storm water)

Main article: Urban runoff

See also: Green infrastructure

Effective control of urban runoff involves reducing the velocity and flow of storm water, as well as reducing pollutant discharges. Local governments use a variety of storm water management techniques to reduce the effects of urban runoff. These techniques, called best management practices (BMPs) in the U.S., may focus on water quantity control, while others focus on improving water quality, and some perform both functions.[39]

Pollution prevention practices include low-impact development techniques, installation of green roofs and improved chemical handling (e.g. management of motor fuels & oil, fertilizers and pesticides).[40] Runoff mitigation systems include infiltration basins, bioretention systems, constructed wetlands, retention basins and similar devices.[41][42]

Thermal pollution from runoff can be controlled by storm water management facilities that absorb the runoff or direct it into groundwater, such as bioretention systems and infiltration basins. Retention basins tend to be less effective at reducing temperature, as the water may be heated by the sun before being discharged to a receiving stream.[39]:p. 5–58

By country

See also

References

  1. ^Pink, Daniel H. (April 19, 2006). "Investing in Tomorrow's Liquid Gold". Yahoo. Archived from the original on April 23, 2006. 
  2. ^ abWest, Larry (2006-03-26). "World Water Day: A Billion People Worldwide Lack Safe Drinking Water". About.com. 
  3. ^"An overview of diarrhea, symptoms, diagnosis and the costs of morbidity"(PDF). CHNRI. 2010. Archived from the original(PDF) on May 12, 2013. 
  4. ^"China says water pollution so severe that cities could lack safe supplies". Chinadaily.com.cn. June 7, 2005.
  5. ^Kahn, Joseph; Yardley, Jim (2007-08-26). "As China Roars, Pollution Reaches Deadly Extremes". New York Times. 
  6. ^Fact Sheet: 2004 National Water Quality Inventory Report to Congress (Report). Washington, D.C.: United States Environmental Protection Agency (EPA). January 2009. EPA 841-F-08-003. 
  7. ^Wachman, Richard (2007-12-09). "Water becomes the new oil as world runs dry". The Guardian. London. Retrieved 2015-09-23. 
  8. ^ abUnited States Geological Survey (USGS), Denver, CO (1998). "Ground Water and Surface Water: A Single Resource." Circular 1139.
  9. ^United States. Clean Water Act, section 502(14), 33 U.S.C. § 1362 (14).
  10. ^U.S. CWA section 402(p), 33 U.S.C. § 1342(p)
  11. ^Moss, Brian (2008). "Water Pollution by Agriculture"(PDF). Phil. Trans. R. Soc. Lond. B. 363: 659–666. doi:10.1098/rstb.2007.2176. 
  12. ^ abEPA. "Protecting Water Quality from Agricultural Runoff." Fact Sheet No. EPA-841-F-05-001. March 2005.
  13. ^ abLaws, Edward A. (2018). Aquatic Pollution: An Introductory Text (4th ed.). Hoboken, NJ: John Wiley & Sons. ISBN 9781119304500. 
  14. ^Harrison, Roy M., ed. (2001). Pollution: Causes, Effects and Control (4th ed.). Cambridge, UK: Royal Society of Chemistry. p. 60. ISBN 0-85404-621-6. 
  15. ^Wu et al (1999). “Water Pollution and Human Health in China.” Environmental Health Perspectives, vol.107, no.4. pp.251-256.)
  16. ^USGS. Reston, VA. "A Primer on Water Quality." FS-027-01. March 2001.
  17. ^Schueler, Thomas R. "Microbes and Urban Watersheds: Concentrations, Sources, & Pathways." Reprinted in The Practice of Watershed Protection.Archived January 8, 2013, at the Wayback Machine. 2000. Center for Watershed Protection. Ellicott City, MD.
  18. ^EPA. “Illness Related to Sewage in Water.” Accessed February 20, 2009. Archived April 27, 2006, at the Wayback Machine.
  19. ^ abEPA. "Report to Congress: Impacts and Control of CSOs and SSOs." August 2004. Document No. EPA-833-R-04-001.
  20. ^ abcG. Allen Burton, Jr., Robert Pitt (2001). Stormwater Effects Handbook: A Toolbox for Watershed Managers, Scientists, and Engineers. New York: CRC/Lewis Publishers. ISBN 0-87371-924-7.  Chapter 2.
  21. ^Schueler, Thomas R. "Cars Are Leading Source of Metal Loads in California." Reprinted in The Practice of Watershed Protection.Archived March 12, 2012, at the Wayback Machine. 2000. Center for Watershed Protection. Ellicott City, MD.
  22. ^Goel, P.K. (2006). Water Pollution - Causes, Effects and Control. New Delhi: New Age International. p. 179. ISBN 978-81-224-1839-2. 
  23. ^Kennish, Michael J. (1992). Ecology of Estuaries: Anthropogenic Effects. Marine Science Series. Boca Raton, FL: CRC Press. pp. 415–17. ISBN 978-0-8493-8041-9. 
Blue drain and yellow fish symbol used by the UK Environment Agency to raise awareness of the ecological impacts of contaminating surface drainage
Poster to teach people in South Asia about human activities leading to the pollution of water sources
Muddy river polluted by sediment.
A garbage collection boom in an urban-area stream in Auckland, New Zealand.
A polluted river draining an abandoned copper mine on Anglesey
Feedlot in the United States

Water pollution refers to the mixing of contaminants or pollutants in to the water bodies (sea, lakes, rivers, oceans, groundwater, etc) through direct or indirect discharges causes environmental degradation and affects whole biosphere (human beings, animals, plants and organisms living in water).

Essay on Water Pollution

Water pollution is the main issue affecting human lives in many ways. We all should know the causes, effects and preventive measures of the water pollution to make our lives better. Let your kids participate in some creative activities in their schools and colleges to increase awareness about the water pollution in the society. Here we have provided some easily written essay on water pollution for students. They can select any water pollution essay according to the need and requirement:

Water Pollution Essay 1 (100 words)

Water pollution has become a continuous increasing problem on the earth which is affecting the human and animal lives in all aspects. Water pollution is the contamination of drinking water by the poisonous pollutants generated by the human activities. The whole water is getting polluted through many sources such as urban runoff, agricultural, industrial, sedimentary, leeching from landfills, animal wastes, and other human activities. All the pollutants are very harmful to the environment. Human population is increasing day by day and thus their needs and competition leading pollution to the top level. We need to follow some drastic changes in our habits to save the earth water as well as continue the possibility of life here.

Water Pollution Essay 2 (150 words)

Water pollution is the most dangerous and worst form of pollution putting lives in danger. The water we drink daily looks very clear however contains verities of microscopic pollutants floating in it. Our earth is covered with water (almost 70% of total) so a little change in it could affect lives worldwide.

The highest level of water pollution is caused by the pollutants come from agriculture field because of the high use of fertilizers, insecticides, and pesticides to enhance the production of crops. We need to bring vast improvements in the type of chemicals we use in the agriculture. Oil is another big pollutant polluting the water. Leaked oil from the land or rivers, oil transport through ships, ship crashes, etc flows to the sea or ocean and affecting whole water. Other hydrocarbon particles get settled down through rain water from air to ocean or sea water. Other toxic wastes through leakage of landfills, old mines, dumps, sewage, industrial wastes, and farms get mixed to the water.

Water Pollution Essay 3 (200 words)

The level of fresh drinking water is becoming less day by day on the earth. There is a limited availability of drinking water on the earth however that too is getting polluted because of human activities. It is tough to estimate the possibility of life on the earth in the absence of fresh drinking water. Water pollution is the mixing of foreign substances by means of organic, inorganic, biological and radiological in the water degrading the quality and usefulness of water.

Hazardous pollutants may contain various types of impurities including harmful chemicals, dissolved gases, suspended matters, dissolved minerals, and even microbes. All the contaminants reduce the level of dissolved oxygen in the water and affecting the lives of animals and human beings to a great extent. Dissolved oxygen is the oxygen present in water required by the aquatic system to continue the lives of plants and animals. However biochemical oxygen is the demanded oxygen by the aerobic micro-organisms to oxidize organic matters of wastes. Water pollution is caused by two means, one is natural water pollution (due to the leaching of rocks, decay of organic matters, decay of dead matters, silting, soil erosion, etc) and another one is man-made water pollution (due to the deforestation, set up of industries near large water bodies, high level emission of industrial wastes, domestic sewage, synthetic chemicals, radio-active wastes, fertilizers, insecticides, pesticides etc).


Water Pollution Essay 4 (250 words)

Fresh water is the most important source of life on the earth. Any living thing may survive without food for days however it is impossible to imagine life without water and oxygen. The ever increasing human population enhances the demand of more water for purposes like drinking, washing, performing industrial processes, irrigating crops, arranging swimming pools and other water-sports centres. Water pollution is done by the people of all over the world because of increasing demands and competitions of luxuries life. Waste products from many human activities are spoiling the whole water and decreasing the amount of oxygen available in the water. Such pollutants are altering the physical, chemical, thermal, and biological characteristics of the water and adversely affecting the lives inside as well as outside the water.

When we drink the polluted water, harmful chemicals and other pollutants goes inside our body and deteriorates all the body organs functioning and puts our lives in danger. Such harmful chemicals also disturb the lives of animals and plants greatly. When plants absorb dirty water through their roots, they stop growing and die. Thousands of seabirds are killing because of the oil spilling from ships and industries. High level of water pollution is done due to the chemicals coming out of the agricultural usage of fertilizers, insecticides and pesticides. The effect of water pollution varies from place to place upon the type and amount of water contamination. The degradation of drinking water needs an urgent basis prevention method which is possible by the proper understanding and support from the end of each and every person living on the earth.

Water Pollution Essay 5 (300 words)

Water is the most important need of the life on the earth. It makes possible the possibility of any forms of life here and their existence. It maintains the ecological balance in the biosphere. Clean water is very necessary for fulfilling the purpose of drinking, bathing, washing, power generation, irrigation of crops, disposal of sewage, manufacturing processes and many more. Increasing human population causes rapid industrialization and unplanned urbanization which are releasing lots wastes into the small and large water bodies which ultimately degrades the quality of water. The mixing of such pollutants directly and continuously into the water bodies decreases the self purifying capacity of the water by declining the ozone (which kills harmful microorganisms) available in the water.

Contamination of water deteriorates the chemical, physical, and biological characteristics of the water which is very harmful to the human beings, animals and plants all over the world. Most of the important animals and plants species have been lost because of the water contamination. It is a global issue affecting the lives in both developed and developing countries. Whole water is getting polluted to a great level because mining, agriculture, fisheries, stockbreeding, various industries, urban human activities, urbanization, increasing number of manufacturing industries, domestic sewage, etc.

There are many sources of the water pollution (point source and nonpoint or diffused source) depending on the specificity of waste materials discharged from various sources. Point sources includes pipelines, ditches, sewers, etc from industries, sewage treatment plants, landfills, hazardous waste sites, leakage from oil storage tanks which discharges wastes directly into the water bodies. Diffused sources of the water pollution are agricultural fields, live-stock feed lots, parking lot and streets into surface water, storm runoff from urban streets, etc which pours their discharged pollutants over the larger areas water bodies. Non-point source pollution contributes highly to the water pollution which is very difficult and expensive to control.


 

Water Pollution Essay 6 (400 words)

Water pollution is the big environmental and social issue all across the world. It has reached to the critical point now. According to the National Environmental Engineering Research Institute (NEERI), Nagpur, it has been noted that around 70 per cent of the river water has been polluted to a great extent. Major river systems of the India such as Ganga, Brahmaputra, Indus, peninsular, and west coast river systems have been affected to a great extent. Major rivers in India especially Ganga is highly associated with the Indian culture and heritage. People generally used to take early morning bath and use Ganga Jal as an offering to the God and Goddess during any festival and fast occasion. They also discharge all the wastes of puja ceremony in the Ganga in the myth of completing their puja.

Discharging of wastes in the rivers causes water pollution by decreasing the self recycling capacity of the water so it should be banned by the government in all countries especially India in order to keep the river water clean and fresh. The condition of water pollution is much worse in the India than other countries having high level of industrialization. As per the report of Central Pollution Control Board, Ganga is the most polluted river in India now which was very famous earlier for its flexibility of self purifying capacity and fast-flowing river. Around 45 tanneries and 10 textile mills are discharging their wastes (containing heavy organic load and decomposed materials) directly into the river near Kanpur. According to the estimates, approximately 1,400 million litres sewage and 200 million litres industrial effluents are getting discharged continuously on daily basis into the river Ganga.

Other main industries causing water pollution are sugar mills, distillery, glycerine, tin, paints, soap spinning, rayon, silk, yarn, etc which are discharging poisonous wastes. In 1984, a Central Ganga Authority was established by the government to start the Ganga Action Plan in order to control the Ganga water pollution. According to this plan around 120 factories were identified in 27 cities spreading pollution to a great extent from Haridwar to Hooghly. Gomati river near Lucknow is receiving wastes of around 19.84 million gallons from the factories of pulp, paper, distillery, sugar, tannery, textile, cement, heavy chemicals, paints and varnishes etc. The condition has become more deteriorating in the last four decades. In order to prevent the water pollution all the industries should follow standard norms, strict laws should be enforced by the Pollution Control Board, arrangement of proper sewage disposal facilities, establishment of sewage and water treatment plant, arrangement of sulabh type toilets and may more.

 

More on Pollution:

Pollution Essay : Air Pollution | Water Pollution | Soil Pollution | Noise Pollution

Pollution Slogans : Air Pollution Slogans | Water Pollution Slogans | Soil Pollution Slogans | Noise Pollution Slogans

Water Pollution : Sources and Causes of Water Pollution | Effects of Water Pollution | How to Control Water Pollution

0 comments

Leave a Reply

Your email address will not be published. Required fields are marked *